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Time-accurate stabilized finite-element model for weakly nonlinear
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SUMMARY

Introduction of a time-accurate stabilized finite-element approximation for the numerical investigation
of weakly nonlinear and weakly dispersive water waves is presented in this paper. To make the time
approximation match the order of accuracy of the spatial representation of the linear triangular elements
by the Galerkin finite-element method, the fourth-order time integration of implicit multistage Padé
method is used for the development of the numerical scheme. The streamline-upwind Petrov–Galerkin
(SUPG) method with crosswind diffusion is employed to stabilize the scheme and suppress the spurious
oscillations, usually common in the numerical computation of convection-dominated flow problems.
The performance of numerical stabilization and accuracy is addressed. Treatments of various boundary
conditions, including the open boundary conditions, the perfect reflecting boundary conditions along
boundaries with irregular geometry, are also described. Numerical results showing the comparisons with
analytical solutions, experimental measurements, and other published numerical results are presented and
discussed. Copyright q 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Boussinesq equations are commonly used to describe weakly nonlinear and weakly dispersive
water waves in a variable depth environment. The original system of Boussinesq equations was
proposed by Peregine [1]. In the past two decades, many researchers, Madsen et al. [2], Nwogu
[3], and Wu [4], among others, have also derived improved Boussinesq systems in an effort to
extend their application.
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Meanwhile, numerical study of those Boussinesq systems has also been an active research
subject. Most of the numerical Boussinesq models, Abbott et al. [5], Nwogu [3], Wei and Kirby
[6], and others, are based on finite-difference methods using rectangular grids. In order to deal with
geometric complexity, a boundary-fitted coordinate system was also introduced into Boussinesq
modeling by Wang et al. [7], Li and Zhan [8], and Shi et al. [9]. The finite-difference method is
simple to use and the best for regular geometric areas; however, for more complicated domains,
local mesh refinements are usually preferred in regions with rapidly varying boundaries or depth.
Even when non-uniform grids are used, it is still relatively hard for standard rectangular grids or
structured curvilinear grids to achieve such grid adjustment. Instead, unstructured finite-element
grids are well qualified for fitting the irregular domains. In the last decade, significant advances
have been made in Boussinesq modeling using finite-element method. Katopodes and Wu [10] and
Antunes do Carmo et al. [11] pioneered probably the earliest finite-element Boussinesq models
but they were limited to the original Boussinesq equations and structured grids. Kawahara and
Cheng [12] have applied linear finite-element method to the equations using fully unstructured
meshes. Many other researchers have focused on solving the improved Boussinesq systems by
finite-element method introducing different auxiliary variables for the second- or higher-order
spatial derivatives appearing in the equations. The Boussinesq model given by Wu [13] was solved
by Langtangen and Pederson [14] with bi-quadratic finite elements. Li et al. [15] developed a linear
quadrilateral finite-element model for the extended Boussinesq equations due to Beji and Nadaoka
[16]. More recently, Walkley and Berzins [17, 18] investigated both one- and two-dimensional
finite-element methods using Nwogu’s [3] extended Boussinesq equations. Woo and Liu [19]
published a finite-element model using Nwogu’s [3] equations too, and then applied it to study the
nonlinear harbor oscillation problems. For their own extended Boussinesq equations [2], Sørensen
et al. [20] proposed a finite-element method in which mixed interpolations (linear and quadratic)
and mixed elements (triangular and quadrilateral) were applied to stabilize the spurious modes.

Among those finite-element Boussinesq models, many have reported the occurrence of spurious
modes especially when linear unstructured finite elements were used for the spatial discretization,
but not much effort has been made to solve the problem. Spurious oscillations are very common
in finite-element modeling of all kinds of flow problems. When the convection effect dominates,
as the case for the propagation of shallow-water waves described by Boussinesq equations, the
high-frequency oscillations may adversely affect the numerical results. According to the analysis
of Donea and Huerta [21], the non-physical oscillations in the Galerkin finite-element method
for convective problems arise from its second-order centered difference nature with a negative
numerical diffusion truncation error inherent in the scheme. The irregularity of unstructured compu-
tational grids may also lead to the lower order truncation errors as a result of the variation of mesh
size over the domain and irregular connection pattern of meshes, which accordingly could generate
negative impact on the accuracy of the numerical solutions. On the other hand, if the computa-
tional mesh is structured with uniform size or even the mesh pattern somehow follows the flow
pattern, there could be some cancelation of truncation errors. In order to stabilize the convective
term, among many other stabilization techniques, the streamline-upwind Petrov–Galerkin (SUPG)
method proposed by Hughes and Mallet [22] has gained great success. The basic idea of the
SUPG method is to introduce an additional diffusion term to the weighting function to counteract
the negative dissipation introduced by the Galerkin formulation. The SUPG method is a linear
high-order method and consequently some oscillations will remain in regions containing sharp
layers, un-resolvable on the finite-element meshes. As a remedy, Hughes and Mallet [23] added a
nonlinear diffusion term (discontinuity capturing term) along the direction of the gradient vector of
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the unknowns. However, as pointed out by Codina [24], this term modifies the streamline diffusion
and may introduce negative numerical diffusion. Thus, he suggested to keep unaltered diffusion in
the direction of the streamlines and to introduce crosswind diffusion terms to improve the stability
of the numerical solutions.

Interactions of solitary waves with a solid vertical cylinder or cylinder arrays have been investi-
gated for many years. Isaacson [25] was among the pioneers to derive analytical solutions using a
Fourier integral transform for a first approximation. Yates and Wang [26] reported an experimental
study of solitary waves scattered by a vertical cylinder. Experimental data were presented for the
wave elevations and the forces on the vertical circular cylinder. Using the finite-difference method,
Wang et al. [7] and Wang and Jiang [27] carried out numerical analyses of solitary waves inter-
acting with a vertical cylinder and cylinder arrays. In the framework of the finite-element method,
this problem was also tested by Ambrosi and Quartapelle [28] and Woo and Liu [19].

In this paper, the SUPG finite-element method with crosswind diffusion is applied to solve the
Boussinesq equations. This is coupled with the highly accurate implicit multistage Padé method
for time integration, as proposed by Donea and Huerta [29]. This model is demonstrated to be
able to obtain accurate oscillation-free results using simple linear triangular elements. Simulated
results for head-on collision of solitary waves are presented. In addition, the model is applied to
investigate the scattering of a solitary wave by a vertical cylinder. The results are compared with
experimental measurements and other numerical solutions. Extension of the model is also carried
out to simulate a solitary wave propagating over a semicircular shoal, which introduces the effect
of variable depth, to further illustrate the performance of the present finite-element Boussinesq
model.

GOVERNING EQUATIONS

Under the assumptions of incompressible, inviscid fluid, and irrotational motion of water, the three-
dimensional nonlinear waves evolving and propagating in two horizontal dimensions on shallow
water with variable depth may be represented by the following Boussinesq equations derived by
Peregrine [1] and Wu [13]:

��∗

�t∗
+∇∗ ·[(h∗+�∗)u∗]=0 (1)

�u∗

�t∗
+ h∗2

6
∇∗

(
∇∗ · �u

∗
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)
− h∗
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∇∗

[
∇∗ ·

(
h∗ �u∗

�t∗

)]
+u∗ ·∇∗u∗+g∇∗�∗ =0 (2)

where z∗ =�∗(x∗, y∗, t∗) is the free-surface elevation as measured from the still water level;
u∗ =(u∗,v∗) is the depth-averaged velocity of the three-dimensional velocity v∗(x∗, y∗, z∗, t∗);
h∗(x∗, y∗) is the still water depth, and g is the gravitational acceleration. Throughout this paper,
a variable in bold indicates a vector. The superscript ∗ denotes dimensional variables and ∇∗ =
(�/�x∗,�/�y∗) is the horizontal gradient operator in Cartesian coordinates.

For the convenience of presenting and examining the numerical results, we rewrite Equa-
tions (1) and (2) in terms of dimensionless variables defined as u=u∗/

√
gh∗

0, (x, y,�,h)=
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(x∗, y∗,�∗,h∗)/h∗
0, and t=√

gh∗
0t

∗/h∗
0, where h∗

0 is a reference water depth. Equations (1) and
(2) in dimensionless form then read

�t +∇·[(h+�)u]=0 (3)

ut + h2

6
∇(∇·ut )− h

2
∇[∇·(hut )]+(u·∇)u+∇�=0 (4)

where the subscript t denotes differentiation in time. Introducing the multidimensional spatial
differential operator L and the auxiliary vector variable w as

w=(wx ,wy)= Lu=−h2

6
∇(∇·u)+ h

2
∇[∇ ·(hu)] (5)

Equation (4) can be simplified to

(1−L)ut +(u·∇)u+∇�=0 (6)

Furthermore, we rearrange the terms in Equations (3) and (4) to obtain the expressions of time
derivatives of the basic unknowns, namely,

�t =−∇ ·[(h+�)u] (7)

ut =(1−L)−1[−(u·∇)u−∇�] (8)

The above equations are used for the temporal and spatial discretizations.

NUMERICAL SCHEME

To conveniently apply the stabilization techniques to the unsteady nonlinear problems, it is prefer-
able that the time discretization be performed before the spatial discretization. Therefore, the time
integration scheme of our finite-element Boussinesq model is discussed first.

Time integration scheme

As remarked by Donea [30], using the conventional Galerkin finite-element approach in the
solution of convection problems, the discretization based on uniform mesh of piecewise linear
elements yields a fourth-order spatial accuracy , while the central finite-difference method is only
second-order accurate in the spatial derivatives. Moreover, in the numerical approximation of
convection or convection-dominated problems, space and time are linked by the characteristics
and the discretization of one certainly influences the other. Proper coupling between the time
discretization and the Galerkin spatial approximation of hyperbolic problems is thus needed. C0-
continuous finite elements can approximate only up to second-order spatial derivatives with the
application of Green’s theorem. If the governing equations have terms up to second-order spatial
derivatives, time integration algorithms are limited to involve only first-order time derivatives when
they are combined with C0-continuous finite-element approximations. To meet this requirement
and achieve the same order of temporal approximation as the spatial approximation given by the
Galerkin method, Donea and Huerta [29] proposed a high-order time-stepping method—the fourth-
order implicit multistage Padé scheme emanating from the factorization of Padé approximations
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to the exponential function. Adopting this scheme to march the numerical solution from a given
time tn =n�t to the next time level tn+1= tn+�t , the time integration scheme involving only
first-order time derivatives and two implicit time stages, for Boussinesq equations, reads

�n+1/2−�n = �t

24
(5�nt +8�n+1/2

t −�n+1
t ) (9a)

�n+1−�n+1/2= �t

24
(−�nt +8�n+1/2

t +5�n+1
t ) (9b)

un+1/2−un = �t

24
(5unt +8un+1/2

t −un+1
t ) (9c)

un+1−un+1/2= �t

24
(−unt +8un+1/2

t +5un+1
t ) (9d)

where the superscript denotes the time level and �t is the time step.
To introduce the local finite-element residue of each unknown at different time stages, we

substitute the time derivatives of the unknowns (Equations (7) and (8)) into the Equations (9a)–(9d)
and rearrange them to form the following residual equations:

R(�n+1/2)=�n+1/2−�n+ �t

24
(5∇·[(h+�)u]n+8∇·[(h+�)u]n+1/2−∇·[(h+�)u]n+1) (10a)

R(�n+1)=�n+1−�n+1/2+ �t

24
(−∇·[(h+�)u]n+8∇·[(h+�)u]n+1/2+5∇·[(h+�)u]n+1) (10b)

R(un+1/2) = (1−L)(un+1/2−un)+ �t

24
(5[(u·∇)u+∇�]n+8[(u·∇)u+∇�]n+1/2

−[(u·∇)u+∇�]n+1) (10c)

R(un+1) = (1−L)(un+1−un+1/2)+ �t

24
(−[(u·∇)u+∇�]n+8[(u·∇)u+∇�]n+1/2

+5[(u·∇)u+∇�]n+1) (10d)

The remaining spatial discretizations of Equations (10a)–(10d) are addressed in the next
subsection.

SUPG method with crosswind diffusion

It is well known that the standard Galerkin method has the difficulty of eliminating spurious
oscillations when applied to convection-dominated flow problems. Modeling nonlinear water waves
as we study herein is a highly convection-dominated problem. Therefore, it becomes necessary to
seek effective ways to stabilize the scheme. The SUPG stabilization technique was identified to
be a well developed and robust method. It possesses the quality of good stability and accuracy.
At the same time, the SUPG method can prevent spurious oscillations from spreading all over the
computational domain.
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Subdividing the computational domain into a grid system with linear triangular elements, the
dependent variables in Equations (3) and (4) are approximated within an element �e as follows:

f e≈
3∑

i=1
Ni f

e
i (11)

where the f ei are the values of any dependent variable at the nodal points of the element and Ni
are the linear shape functions.

The derivation of finite-element equation for the unknown �n+1/2, using the least-squares method,
is given below to show the procedure of derivation of finite-element equations for other variables.
The integral of the square of the residual R(�n+1/2) over an element is required to vanish. This
means the derivative of the integral with respect to each nodal value of �n+1/2

k must be zero. After
substituting �n+1/2 with the expression of Equation (11) into Equation (10a), the above-described
minimizing condition leads to

�
∫ ∫

�e R2(�n+1/2)dx dy

��n+1/2
k

=2
∫ ∫

�e

(
Nk + �t

3
∇ ·(Nkun+1/2)

)
R(�n+1/2)dx dy=0 (12a)

or ∫ ∫
�e

Nk R(�n+1/2)dx dy+
∫ ∫

�e

1

3
�n+1/2∇·(Nkun+1/2)R(�n+1/2)dx dy=0 (12b)

It can be seen from Equation (12a) or (12b), in addition to the standard weighting function Nk ,
another weighting term, (�n+1/2/3)∇·(Nkun+1/2), has been rigorously derived in establishing the
element equation for �n+1/2. This term adds the effect of streamline diffusion for the removal
of non-physical oscillations along the streamline direction. With the addition of the streamline
diffusion term, the finite-element formulation developed here is similar to the Galerkin/least-
squares method as referred by Hughes et al. [31]. Here, the time step �t in the second weighting
term has been replaced by �n+1/2 to have some control of the amount of the added diffusion. � is
the stabilization parameter, intrinsic time, which varies with time step, grid size, and the velocity
magnitude. Following the idea of Shakib [32], for different time stage it is defined as

(�e)n+1/2=
1

3√(
1

�t

)2

+
(
1

3

2‖ue‖n+1/2

�le

)2
(13a)
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24√(
1
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)2

+
(

5
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)2
(13b)
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where le is a length scale representing the element size, � is a constant, and ‖ue‖ is the norm of
element-averaged velocity vector, defined as

ue = 1

Ae

∫ ∫
�e

udx dy= 1

Ae

∫ ∫
�e

(Niui i+Nivi j)dx dy

= 1

3
(u1+u2+u3)i+ 1

3
(v1+v2+v3)j (14)

Here, Ae is the element area and (ui ,vi ), i=1,2,3, represent the velocity components at the nodal
points of an element. In this study, the diameter of the inscribed circle of a triangular element is
used for le.

To remove the oscillations remaining due to the absence of control of the solution gradient in
directions other than along the streamlines, a crosswind diffusion term is proposed to be included
in Equation (12b). Then, we have∫ ∫

�e
Nk R(�n+1/2)dx dy+

∫ ∫
�e

1

3
�n+1/2∇·(Nkun+1/2)R(�n+1/2)dx dy

+
∫ ∫

�e

1

3
��n+1/2∇Nk⊥ ·∇�n+1/2

⊥ dx dy=0 (15)

where ∇�n+1/2
⊥ denotes the crosswind derivative of �n+1/2 and ��n+1/2 is the crosswind viscosity

for �n+1/2. For the expression of ∇�n+1/2
⊥ , let us assume f to be any dependent variable, we have

∇ f⊥ = P⊥ ·∇ f (16)

where the tensorial structure P⊥ =I−u⊗u/‖u‖2 , I, being the unit tensor, is the orthogonal
projector onto the crosswind direction, and ⊗ denotes the tensorial product between two vectors.
According to Codina [24], the nonlinear crosswind viscosity � f can be expressed as

� f =
{

1
2�l

e|Re( f )|/‖∇ f e‖ if ‖∇ f e‖ �=0

0 otherwise
(17)

where Re( f )=(1/Ae)
∫ ∫

�e R( f )dx dy, ∇ f e=(1/Ae)
∫ ∫

�e ∇ f dx dy, and R( f )’s are given in
(10a)–(10d). Detailed expressions of Re( f ) and ∇ f e for all dependent variables can be found in
Zhong [33].

Following a similar procedure, the finite-element equations for �n+1, un+1/2, un+1, vn+1/2, and
vn+1 with the addition of crosswind diffusion terms can be written as∫ ∫

�e
Wk R(�n+1)dx dy+

∫ ∫
�e

5

24
�n+1∇ ·(Wkun+1)R(�n+1)dx dy

+
∫ ∫

�e

5

24
��n+1∇Wk⊥ ·∇�n+1

⊥ dx dy=0 (18a)
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∫ ∫
�e

Wk R(un+1/2)dx dy+
∫ ∫

�e

1

3
�n+1/2∇Wk ·un+1/2R(un+1/2)dx dy

+
∫ ∫

�e

1

3
�un+1/2∇Wk⊥ ·∇un+1/2

⊥ dx dy=0 (18b)

∫ ∫
�e

Wk R(un+1)dx dy+
∫ ∫

�e

5

24
�n+1∇Wk ·un+1R(un+1)dx dy

+
∫ ∫

�e

5

24
�un+1∇Wk⊥ ·∇un+1

⊥ dx dy=0 (18c)

∫ ∫
�e

Wk R(vn+1/2)dx dy+
∫ ∫

�e

1

3
�n+1/2∇Wk ·un+1/2R(vn+1/2)dx dy

+
∫ ∫

�e

1

3
�vn+1/2∇Wk⊥ ·∇v

n+1/2
⊥ dx dy=0 (18d)

∫ ∫
�e

Wk R(vn+1)dx dy+
∫ ∫

�e

5

24
�n+1∇Wk ·un+1R(vn+1)dx dy

+
∫ ∫

�e

5

24
�vn+1∇Wk⊥ ·∇vn+1

⊥ dx dy=0 (18e)

where Wk is the weighting function and, here, is identical to the shape function Nk of the element.
Applying Green’s theorem to the weighted element integral of the auxiliary vector variable w

in Equation (5), we have∫ ∫
�e

Wkwdx dy=
∫ ∫

�e
Wk Ludx dy=

∫ ∫
�e

Wk

{
h2

3
∇(∇ ·u)+ h

2
[∇·u∇h+∇(∇h ·u)]

}
dx dy

= 1

2

∫ ∫
�e

Wkh∇·u∇h dx dy− 1

3

∫ ∫
�e

∇(Wkh
2)(∇·u)dx dy− 1

2

∫ ∫
�e

∇(Wkh)(∇h ·u)dx dy

+1

3

∫
�e

Wkh
2(∇·u)nds+ 1

2

∫
�e

Wkh(∇h ·u)nds (19)

For the inner domain nodes, the line integrals in the expression will cancel out each other. At the
wall boundary nodes, only the tangential component of w in Equation (19) is needed for solving
the tangential momentum equations. Therefore, the line integrals are omitted in the computation.
As a result, the spatial discretization is applied only to the area integrals in Equation (19).

Substituting Equations (10a)–(10d) with the use of Equation (11) for each unknown variable
into Equations (15), (18a)–(18e), and (19) and performing element integrations, we can construct
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a series of spatially discretized element equations of the variables, which are assembled at each
nodal point to formulate the final algebraic equations. Expressions of the spatial discretization of
each term shown in Equations (15), (18a)–(18e), and (19) are summarized in Appendix A. Solving
this system of equations by a standard successive over-relaxation iterative method, the unknowns
at each node can be determined for a given time level.

INITIAL AND BOUNDARY CONDITIONS

For the cases investigated in this paper, Equations (3) and (4) for � and u are to be solved
with appropriate initial and boundary conditions over the flow domain and boundaries. A
solitary wave profile with dimensionless amplitude � situated initially at x= x0 is considered
as the incident wave condition. Here, �=a∗/h∗

0 and a∗ is a dimensional wave amplitude.
The selection of initial solitary wave solutions for the modeling study is critically important.
A set of second-order closed-form solutions derived by Schember [34] for a solitary wave
in a domain of constant depth has been adopted for solitary wave modeling study by Wang
et al. [7]. However, Schember’s [34] solitary wave solutions are not the exact solutions of
Equations (3) and (4). As noted in many numerical studies of Boussinesq equations [6, 17], if an
approximate solution of the governing equations is specified as the initial condition, a slightly
higher amplitude solitary wave is formed together with a phase lag and a small dispersive tail
trailing behind the main wave crest, compared with the approximate analytical solution.

To produce more accurate numerical solutions, it is preferable to have exact solutions as the
initial conditions of the differential governing equations. The procedure of deriving a permanent
wave form solution satisfying exactly Equations (3) and (4) (when h=1) has been addressed
by Teng and Wu [35]. For a right-going solitary wave, the inputted incident wave elevation and
depth-averaged horizontal velocity for the present study are obtained by solving the following
equations for � and U :

�= U

1−U
(20)

(UX )2=(3−U )U 2− (U0−3)U 2
0

U0+ ln(1−U0)
[U+ ln(1−U )] (21)

where U =u/c, X = x−ct−x0, U (0)=U0, and both u and � are functions of X . c=c∗/
√
gh∗

0 is
a constant dimensionless phase speed to be determined as

c=±
√
6
U0+ ln(1−U0)

(U0−3)U 2
0

(22a)

or

c=±
√

6(1+�)2

�2(2�+3)
[(1+�) ln(1+�)−�] (22b)

As Equations (20) and (21) give the exact solitary wave solutions for the initial condition, the
boundary condition for solid walls also needs to be applied. Following Engelman et al. [36], we
consider a locally rotated coordinate system—(n,T ) at a wall boundary node in which n is aligned
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with the outward normal and T is the tangent. The outward normal vector n=(nx ,ny) and the
tangent vector T=(Tx ,Ty) are the basis vectors corresponding to n and T -axis. At a reflective
wall boundary, the condition of impermeability requires that the normal velocity is equal to zero,
i.e.

un =0 (23)

At a wall boundary node, since the normal velocity is specified, only the momentum equation in
the tangential direction is solved for the tangential velocity uT . The tangential element momentum
equation is obtained from the inner product of the element equation of the velocity vectors
(Equations (18b)–(18e)) in the Cartesian coordinate system with the tangential vector T at that
boundary node. Finally, the x and y-components of the velocity vector at the node are recovered
from the following relations:

u=TxuT −Tyun =TxuT (24a)

v=TyuT +Txun =TyuT (24b)

Along the right or left open boundary, the radiation condition is applied to propagate waves out
of the computational domain. Here, we adopt the linear radiation condition as an approximation
of the open boundary conditions in dimensionless form

ut ±ux =0 (25a)

�t ±�x =0 (25b)

where ‘+’ is for the right open boundary, ‘−’ is for the left open boundary. These open boundary
conditions have been proved to be able to effectively propagate waves out of the computational
domain with negligible artificial reflection [7]. Following a similar discretization technique as
described above, the finite-element equations of Equations (25a) and (25b) are solved using the
fourth-order time integration of implicit multiple stage Padé method and the SUPG method with
crosswind diffusion at open boundaries.

RESULTS

Tests of the performance of numerical model and initial wave conditions

The newly developed finite-element Boussinesq model described in the previous sections is first
validated by comparing results with analytical and other numerical solutions for the case of plane
solitary waves propagating through a rectangular channel with a constant depth. The z-axis points
upward, with the plane z=0 at the level of undisturbed water surface. The dimensions of the
channel and the initial wave amplitude are 0�x�60, 0�y�6, and �=0.5, where x denotes the wave
propagation direction and y is the transverse direction. Both x and y are made non-dimensional
using the undisturbed water depth h∗

0. Unstructured triangular elements of an average size of
le=0.2, �t=0.2 and the constant �=2.0 are used in the numerical computations. For the purpose
of comparison, the three-dimensional perspective view plots showing part of the free-surface
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(a)

(b)

ζ
ζ

Figure 1. Comparisons of free-surface elevations at t=30 (�=0.5): (a) finite-element method without
stabilization and (b) present model with stabilization.
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Figure 2. Comparisons of solitary wave profiles obtained from the present FE model and Teng and Wu’s
[35] exact solution for a long simulation time with �=0.5.
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Figure 3. Perspective view plot of wave elevations along the centerline of the
computational domain at different instants showing head-on collision of two solitary

waves with dimensionless amplitudes of 0.4 and 0.2.

Figure 4. Schematic diagram of initial solitary waves incident upon a surface-piercing vertical cylinder.

Figure 5. Example plot showing unstructured triangular meshes for modeling solitary waves
interaction with a vertical cylinder.
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t = 10

t = 16

t = 23

t = 30

Figure 6. Three-dimensional time-sequence perspective view plot of free-surface elevation for �=0.4.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:715–744
DOI: 10.1002/fld



728 Z. ZHONG AND K. H. WANG

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 5 10 15 20 25

t

numerical--FDM

numerical--FEM

experimental

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 5 10 15 20 25

t

numerical--FDM
numerical--FEM
experimental

 = 0°
r/R =2.61 

 = 0°
r/R =1.03 

ζ
ζ

(a)

(b)

Figure 7. Free-surface elevation � as a function of time along �=0◦ at (a) r/R=2.61 and (b) r/R=1.03
(—- present model, - - - - [7], ��� [26]).

elevation at t=30 after traveling from an initial position x=10.0 are presented in Figure 1. Here,
t is non-dimensionalized using

√
h∗
0/g. Figure 1(a) depicts the results by the finite-element method

without stabilization and Figure 1(b) shows the free-surface elevation at the same instant computed
using the present model with the implementation of the stabilization technique. Clearly, the wave
surface is very smooth and the shape of the wave has been well maintained when the proposed
stabilization technique is used; otherwise, the spurious oscillations as shown in Figure 1(a) would
appear in the flow domain.

To demonstrate the performance of the present Boussinesq model for a long simulation time
and examine the exact representation of the initial solitary wave condition, model is simulated
for a free wave traveling in a domain with dimensionless length extended to 300 using the initial
wave conditions from Equations (20) and (21). Presented in Figure 2 are the simulated free-surface
profiles along the central line of the channel at different instants and the exact solitary wave
solutions of Equations (20) and (21). It is found that the solutions of present model agree well
with the Teng and Wu’s [35] exact solitary wave solutions in terms of wave amplitude and phase
speed. After a long simulation time (t=200), the amplitude of the solitary wave still maintains
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Figure 8. Free-surface elevation � as a function of time along �=60◦ at (a) r/R=2.92 and (b) r/R=1.35
(—- present model, - - - - [7], ��� [26]).

nearly the same as the initial amplitude of 0.5. The numerical solutions of the present model do
not show any dispersive tails behind the primary waves as observed by other researchers [6, 17]
using the approximate initial wave condition. Figure 2 also indicates that the numerically predicted
phase speed matches very well with the exact solution for a long simulation time.

Modeling head-on collision of two solitary waves

Head-on collision of two solitary waves is a classical problem that has been studied analytically
[37–39] and numerically [40, 41]. It is also a widely used case to test the performance of nonlinear
shallow-water wave models. The physical process of wave propagation and associated wave–wave
interaction can be examined. In this study, two solitary waves with dimensionless wave amplitudes
of 0.4 and 0.2 propagating in opposite direction are inputted for simulation. The solitary wave with
amplitude of 0.4 is assumed to propagate along the positive x direction, whereas the 0.2-amplitude
solitary wave propagates along the negative x direction.
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Figure 9. Free-surface elevation � as a function of time along �=100◦ at (a) r/R=2.29 and (b) r/R=1.35
(—- present model, - - - - [7], ��� [26]).

The head-on collision simulation is performed in a two-dimensional domain of narrow channel.
The perspective view plot of wave elevations along the centerline of the spatial domain at different
instants is shown in Figure 3. The evolution of two solitary waves before, during, and after the
interaction can be clearly observed. Two solitary waves meet together to form a single solitary
wave with amplitude reaching 0.642 at the stage of maximum interaction (t=22.2), which agrees
well with the analytical results reported in Su and Mirie [38], i.e. �1+�2+ 1

2�1�2=0.64. It can be
seen that each individual wave emerges to recover its original wave form and continue the path
of movement in its respective propagating direction. However, during the process of interaction
of nonlinear waves, the exchange and transformation of energy causes a slightly delayed wave
separation and results in a phase shift for waves before and after the collision. Similar to other
studies’ findings, the height of the peak during the collision is shown to be slightly greater than
the sum of the two wave amplitudes. It is found that the present finite-element Boussinesq model
produces similar results to those presented in Li et al. [41].
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Figure 10. Free-surface elevation � as a function of time along �=150◦ at (a) r/R=2.29 and (b) r/R=1.35
(—- present model, - - - - [7], ��� [26]).

Modeling a solitary wave interaction with a vertical cylinder

To show the performance of the present developed model for simulating three-dimensional wave
propagation and wave–structure interaction, we use it to study the scattering of a solitary wave
by a vertical surface-piercing circular cylinder, as shown in the definition sketch in Figure 4. The
dimensions of the computational domain in a channel of constant water depth are −10�x�50
and −15�y�15. The cylinder with dimensionless radius R=1.5875 is fixed in the center of the
channel at (20,0). The radius of the cylinder is selected to be the same as the one used in Yates
and Wang’s [26] experimental study so that comparisons can be made between model results and
measured data. Again, the domain is subdivided into a mesh of unstructured triangular elements
of an average size of le=0.2; but local refinement in the region surrounding the cylinder has been
applied so that smaller elements are distributed around the cylinder. An example plot showing
the unstructured coarse grid system is illustrated in Figure 5. A more refined grid system with an
average size of le=0.2 was used to produce results for solitary waves interacting with a vertical
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Figure 11. Free-surface elevation � as a function of time along �=180◦ at (a) r/R=2.29 and (b) r/R=1.35
(—- present model, - - - - [7], ��� [26]).

cylinder. For regions away from the cylinder, the grid size is about 0.2, while near the cylinder the
grid size is as small as 0.05. The time step �t=0.1 and the constant � used in Equations (13a),
(13b), and (17) is taken to be 2.0. At the beginning, a plane solitary wave is placed between the left
boundary and the cylinder with sufficient distance from the cylinder to have still water level around
the cylinder. The wave then is allowed to travel in two horizontal dimensions towards the cylinder.
Figure 6 shows a time sequence of three-dimensional perspective view plots of the free-surface
elevation for �=0.4. At t=10, the incident solitary wave is approaching the cylinder. When the
wave peak impacts on the cylinder, the solitary wave simply piles up in front of the cylinder surface
at t=16. Once the primary wave propagates past the cylinder (t=23), the diffraction of local
waves around the cylinder is already evident; while the central part of the primary wave has a lower
height but does not suffer from any phase lag with respect to the rest of the wave. After the wave
has traveled a distance of more than 15 water depths beyond the cylinder, at t=30, a sequence
of significant scattered waves propagating away from the cylinder can be observed; however, the
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variation of amplitude of the primary wave remains as the impinging solitary wave tends to recover
its initial shape. These features have also been noticed by other authors (for example, [7, 28]).
Regarding the maximum run-up at the cylinder, the present model predicts a value of 0.656 at
t=15.8. For comparison, with an initial wave amplitude of �=0.3, the present model provides a
prediction of 0.5, which is close to the 0.47 obtained by Ambrosi and Quartapelle [28].

For the case of a solitary wave interaction with a vertical cylinder, comparisons between the
present finite-element solutions and the experimental measurements of wave elevation at selected
locations around the cylinder [26] are presented in Figures 7–11. Results from the finite-difference
Boussinesq model of [7] are also plotted for comparison. The dimensionless incident wave ampli-
tude is 0.4. Figures 7–11 show the time variation of the wave elevations along the upstream
centerline (�=0◦) and other angular directions (�=60,100,150, and 180◦).

In Figure 7(a) (r/R=2.61 and �=0◦), the main incident wave and a reflected wave followed
by a negative wave, which develops into a train of oscillatory waves can be observed. At a location
closer to cylinder (r/R=1.03), the main wave shows the trend of piling up in front of the cylinder
with a maximum amplitude of about 0.65, which is immediately followed by a negative wave,
where the first reflected wave already propagates radially outward (Figure 7(b)). A similar wave
scattering pattern along �=60◦ line can be noticed from results in Figure 8. From Figures 7 and 8,
it appears that the present numerical results show quite good agreement with the experimental
measurements. The results from the finite-element model also agree very well with those from
the finite-difference model. The numerically predicted maximum amplitude of the main wave at a
location very close to the cylindrical surface is slightly greater than the measured one.

On the rear side of the cylinder, wave elevations along the �=100,150, and 180◦ (Figures
9–11) show the propagation of the main wave followed by a back-scattered wave and subsequently
a train of small oscillatory waves. Good agreement between the predicted wave elevations and
measured ones along the angular direction of 100◦ can be noticed. At �=150◦, the amplitude
of the main wave near the cylinder (at r/R=1.35) is reduced as a result of the blockage by the
cylinder. However, the main wave recovers very quickly to its original wave amplitude as shown
in Figure 11(b) for wave elevation at r/R=1.35 and �=180◦. Again, the present model results
show good agreement with experimental measurements and with those from the finite-difference
model even at regions behind the cylinder (Figures 9–11). Certainly, the numerical model tends to
slightly over-predict the wave amplitude for waves in the region behind and close to the cylinder.
The difference in the maximum amplitude may be caused by the viscous effect and flow separation,
which are not accounted for in the Boussinesq equations.

Propagation of a solitary wave over a semicircular shoal

The present finite-element Boussinesq model is also extended to simulate a solitary wave propa-
gating over a semicircular shoal, which introduces the effect of variable depth. In dimensionless
variables, the domain is (x, y)∈[−15,60]×[0,6.67] with x=−15 and 60 being the inflow and
outflow boundaries, and y=0 and 6.67 as the wall boundaries, respectively. The dimensionless
water depth within the domain follows the expression given by

h(x, y)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.0, −15.0�x�11.67−G

1.0+ 1

11.43
(11.67−G−x), 11.67−G�x�20.0−G

0.271, 20.0−G�x�60.0

(26)
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Figure 12. Bottom topography of a semicircular shoal.

where

G(y)=[y(6.67− y)]1/2, 0�y�6.67 (27)

A perspective view plot of bottom topography of the domain is shown in Figure 12. From
Equation (26), it can be noticed that the undisturbed water depth varies from 1 to 0.271 in the
shallower water depth region.

The domain is divided into 54 066 triangular elements with an average element size of 0.2. The
time step �t is 0.1. At the beginning, a solitary wave of dimensionless amplitude 0.08 is situated
at x=0. Figure 13 illustrates the propagation and transformation procedure of a solitary wave
over the semicircular shoal with a time series of three-dimensional perspective view plots of wave
elevation profiles. It is shown clearly from Figure 13 that the wave form has been strongly affected
by the bottom curving shoal. At t=25, the primary wave crest is gradually amplified at the central
region due to wave focusing. A convex wave crestline is formed with a set down of wave elevation
occurring right behind the primary wave peak in the middle of the channel. However, the focusing
waves, although having higher amplitude, remain propagating at the same pace as the waves along
the side walls. Meanwhile, small amplitude waves reflected by the submerged shoal are scattered
backward to the left open boundary. Upon entering the region of shallower water depth, the wave
energy of the leading wave is redistributed along the crestline, causing the non-uniform wave
profile to slosh back and forth across the channel as indicated from plots at t=25, 30, and 40.
With the waves traveling farther downstream in the shallower water depth area, the interesting
wave fission phenomenon showing the appearance of three secondary wave crests with decreasing
wave amplitude propagating behind the main incident wave can be observed at t=70. The sloshing
effect is also noticed to become smaller and smaller. The results present interesting phenomena of
wave focusing and the coherent structure of wave propagation due to the well-balanced interplay
of both nonlinear and dispersive effects.
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Figure 13. A time sequence of three-dimensional perspective view plots of a solitary wave propagating
over a submerged semicircular shoal.

The free-surface elevations are also plotted along the centerline of the channel at various times
(Figure 14). After the main wave enters into the region of variable water depth (the submerged
shoal region), the peak of the wave begins to tilt forward. At the same time, the reflected waves
from the submerged shoal emerge behind the main wave (t=20). However, as soon as the main
wave passes the shoal and propagates into the shallower water depth area the whole fission
process of transforming the main wave into four separate waves of decreasing wave amplitude is
demonstrated clearly in the plots from t=30 to 70. The maximum wave amplitude of the primary
wave reached in the shallower water depth region is 0.186. This indicates that the ratio between
the wave amplitude and the shallower water depth is about 0.69, which is close to the limitation
of the applicable range of weakly nonlinear and weakly dispersive Boussinesq equations.

Overall, the present developed finite-element Boussinesq model can provide stable and accurate
predictions on the propagation of nonlinear shallow-water waves in two horizontal dimensions
and their interactions with cylindrical structures. The successful modeling of a solitary wave
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Figure 14. A time sequence of free-surface profiles along the centerline of the channel for a solitary wave
propagating over a submerged semicircular shoal.

propagating over a submerged three-dimensional shoal demonstrates again the robustness of the
new numerical scheme.

CONCLUSIONS

A new SUPG finite-element model with crosswind diffusion for the Boussinesq equations is
presented in this paper. When properly coupled with the highly accurate implicit multistage Padé
time integration scheme, the stabilization technique employed in this model has been proved to
be very effective in suppressing spurious oscillations. For the case of a solitary wave propagating
at a constant depth, good agreements, in terms of both free-surface amplitude and phase speed,
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are found between present numerical results and analytical solutions, even for a long simulation
time. Accurate results are also obtained for modeling head-on collision of two solitary waves.
The application of the proposed model to the case of solitary waves propagating past a vertical
cylinder reveals two interesting features: Once the primary wave has past the cylinder, the central
part of the primary wave has a lower height but does not suffer from any phase lag with respect
to the rest of the wave. Moreover, as the incident wave moves farther and farther away from the
obstacle, a sequence of significant scattered waves propagate outwards from the cylinder; however,
the impinging solitary wave tends to recover its initial shape. The effect of variable depth is also
tested from a simulation of a solitary wave propagating past a submerged semi-circular shoal.
Interesting wave fission phenomenon showing the appearance of a series of secondary wave crests
with decreasing wave amplitude propagating behind the main incident wave can be observed. Model
simulations for the results presented in the paper were run in PCs with either single processor or
dual processors system. The results can be obtained within a few days to weeks depending on the
size of the computational domain and simulation time of interest. The present numerical model is
demonstrated to be able to produce relatively accurate and stabilized results, which have shown
fairly good agreements with the experimental measurements and other published analytical and
numerical solutions.

APPENDIX A: FINITE ELEMENT FORMULATIONS IN EQUATIONS
(15), (18a)–(18e), AND (19)∫ ∫
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�n+1∇·(Wkun+1)R(�n+1)dx dy

= 5

24
�n+1((Oki j +Uki j )u

n+1
j +(Pki j +Vki j )v

n+1
j )�n+1

i

− 5

24
�n+1((Oki j +Uki j )u

n+1
j +(Pki j +Vki j )v

n+1
j )�n+1/2

i

−5�t

576
�n+1

⎛
⎜⎝((Cki jl +Qki jl )u

n+1
l +(Eki jl +Ski jl )v

n+1
l )[unj (hi +�ni )+uni (h j +�nj )]

+((Dki jl +Rki jl )u
n+1
l +(Fki jl +Tki jl )v

n+1
l )[vnj (hi +�ni )+vni (h j +�nj )]

⎞
⎟⎠

+ 5�t

72
�n+1

⎛
⎜⎝

((Cki jl +Qki jl )u
n+1
l +(Eki jl +Ski jl )v

n+1
l )[un+1/2

j (hi +�n+1/2
i )+un+1/2

i (h j +�n+1/2
j )]

+((Dki jl +Rki jl )u
n+1
l +(Fki jl +Tki jl )v

n+1
l )[vn+1/2

j (hi +�n+1/2
i )+v

n+1/2
i (h j +�n+1/2

j )]

⎞
⎟⎠

+ 25�t

576
�n+1

⎛
⎜⎝

((Cki jl +Qki jl )u
n+1
l +(Eki jl +Ski jl )v

n+1
l )[un+1

j (hi +�n+1
i )+un+1

i (h j +�n+1
j )]

+((Dki jl +Rki jl )u
n+1
l +(Fki jl +Tki jl )v

n+1
l )[vn+1

j (hi +�n+1
i )+vn+1

i (h j +�n+1
j )]

⎞
⎟⎠ (A5)

∫ ∫
�e

5

24
��n+1∇Wk⊥ ·∇�n+1

⊥ dx dy = 5

24
��n+1

(
Jki +Kki − 1

‖u‖2 ((Qki jlu
n+1
l +Rki jlv

n+1
l )un+1

j

+ (Ski jlu
n+1
l +Tki jlv

n+1
l )vn+1

j )

)
�n+1
i (A6)
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∫ ∫
�e

Wk R(un+1/2)dx dy

=Mki (u
n+1/2
i −w

n+1/2
xi )−Mki (u

n
i −wn

xi )+
�t

24
Uki (5�

n
i +8�n+1/2

i −�n+1
i )

+ �t

24
Ski j (5u

n
j u

n
i +8un+1/2

j un+1/2
i −un+1

j un+1
i )

+�t

24
Tki j (5v

n
j u

n
i +8vn+1/2

j un+1/2
i −vn+1

j un+1
i ) (A7)

∫ ∫
�e

1

3
�n+1/2∇Wk ·un+1/2R(un+1/2)dx dy

= 1

3
�n+1/2(Uki j u

n+1/2
j +Vki jv

n+1/2
j )(un+1/2

i −w
n+1/2
xi )

−1

3
�n+1/2(Uki j u

n+1/2
j +Vki jv

n+1/2
j )(uni −wn

xi )

+ �t

72
�n+1/2(Jki j u

n+1/2
j +Xki jv

n+1/2
j )(5�ni +8�n+1/2

i −�n+1
i )

+ �t

72
�n+1/2(Qki jlu

n+1/2
l +Ski jlv

n+1/2
l )(5unj u

n
i +8un+1/2

j un+1/2
i −un+1

j un+1
i )

+�t

72
�n+1/2(Rki jlu

n+1/2
l +Tki jlv

n+1/2
l )(5vnj u

n
i +8vn+1/2

j un+1/2
i −vn+1

j un+1
i ) (A8)

∫ ∫
�e

1

3
�un+1/2∇Wk⊥ ·∇un+1/2

⊥ dx dy

= 1

3
�un+1/2

(
Jki +Kki − 1

‖u‖2 ((Qki jlu
n+1/2
l +Rki jlv

n+1/2
l )un+1/2

j

+(Ski jlu
n+1/2
l +Tki jlv

n+1/2
l )v

n+1/2
j )

)
un+1/2
i (A9)

∫ ∫
�e

Wk R(un+1)dx dy

=Mki (u
n+1
i −wn+1

xi )−Mki (u
n+1/2
i −w

n+1/2
xi )+ �t

24
Uki (−�ni +8�n+1/2

i +5�n+1
i )

+ �t

24
Ski j (−unj u

n
i +8un+1/2

j un+1/2
i +5un+1

j un+1
i )

+ �t

24
Tki j (−vnj u

n
i +8vn+1/2

j un+1/2
i +5vn+1

j un+1
i ) (A10)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:715–744
DOI: 10.1002/fld



740 Z. ZHONG AND K. H. WANG

∫ ∫
�e

5

24
�n+1∇Wk ·un+1R(un+1)dx dy

= 5

24
�n+1(Uki j u

n+1
j +Vki jv

n+1
j )(un+1

i −wn+1
xi )

− 5

24
�n+1(Uki j u

n+1
j +Vki jv

n+1
j )(un+1/2

i −w
n+1/2
xi )

+ 5�t

576
�n+1(Jki j u

n+1
j +Xki jv

n+1
j )(−�ni +8�n+1/2

i +5�n+1
i )

+ 5�t

576
�n+1(Qki jlu

n+1
l +Ski jlv

n+1
l )(−unj u

n
i +8un+1/2

j un+1/2
i +5un+1

j un+1
i )

+ 5�t

576
�n+1(Rki jlu

n+1
l +Tki jlv

n+1
l )(−vnj u

n
i +8vn+1/2

j un+1/2
i +5vn+1

j un+1
i ) (A11)

∫ ∫
�e

5

24
�un+1∇Wk⊥ ·∇un+1

⊥ dx dy

= 5

24
�un+1

(
Jki +Kki − 1

‖u‖2 ((Qki jlu
n+1
l +Rki jlv

n+1
l )un+1

j

+ (Ski jlu
n+1
l +Tki jlv

n+1
l )vn+1

j )

)
un+1
i (A12)

∫ ∫
�e

Wk R(vn+1/2)dx dy

=Mki (v
n+1/2
i −w

n+1/2
yi )−Mki (v

n
i −wn

yi )+
�t

24
Vki (5�

n
i +8�n+1/2

i −�n+1
i )

+�t

24
Ski j (5u

n
jv

n
i +8un+1/2

j v
n+1/2
i −un+1

j vn+1
i )

+ �t

24
Tki j (5v

n
j v

n
i +8vn+1/2

j v
n+1/2
i −vn+1

j vn+1
i ) (A13)

∫ ∫
�e

1

3
�n+1/2∇Wk ·un+1/2R(vn+1/2)dx dy

= 1

3
�n+1/2(Uki j u

n+1/2
j +Vki jv

n+1/2
j )(v

n+1/2
i −w

n+1/2
yi )

− 1

3
�n+1/2(Uki j u

n+1/2
j +Vki jv

n+1/2
j )(vni −wn

yi )

+ �t

72
�n+1/2(Kki j u

n+1/2
j +Yki jv

n+1/2
j )(5�ni +8�n+1/2

i −�n+1
i )

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:715–744
DOI: 10.1002/fld



TIME-ACCURATE STABILIZED FINITE-ELEMENT MODEL 741

+ �t

72
�n+1/2(Qki jlu

n+1/2
l +Ski jlv

n+1/2
l )(5unjv

n
i +8un+1/2

j v
n+1/2
i −un+1

j vn+1
i )

+ �t

72
�n+1/2(Rki jlu

n+1/2
l +Tki jlv

n+1/2
l )(5vnj v

n
i +8vn+1/2

j v
n+1/2
i −vn+1

j vn+1
i ) (A14)

∫ ∫
�e

1

3
�vn+1/2∇Wk⊥ ·∇v

n+1/2
⊥ dx dy

= 1

3
�vn+1/2

(
Jki +Kki − 1

‖u‖2 ((Qki jlu
n+1/2
l +Rki jlv

n+1/2
l )un+1/2

j

+ (Ski jlu
n+1/2
l +Tki jlv

n+1/2
l )v

n+1/2
j )

)
v
n+1/2
i (A15)

∫ ∫
�e

Wk R(vn+1)dx dy

=Mki (v
n+1
i −wn+1

yi )−Mki (v
n+1/2
i −w

n+1/2
yi )+ �t

24
Vki (−�ni +8�n+1/2

i +5�n+1
i )

+ �t

24
Ski j (−unjv

n
i +8un+1/2

j v
n+1/2
i +5un+1

j vn+1
i )

+ �t

24
Tki j (−vnj v

n
i +8vn+1/2

j v
n+1/2
i +5vn+1

j vn+1
i ) (A16)

∫ ∫
�e

5

24
�n+1∇Wk ·un+1R(vn+1)dx dy

= 5

24
�n+1(Uki j u

n+1
j +Vki jv

n+1
j )(vn+1

i −wn+1
yi )

− 5

24
�n+1(Uki j u

n+1
j +Vki jv

n+1
j )(v

n+1/2
i −w

n+1/2
yi )

+ 5�t

576
�n+1(Kki j u

n+1
j +Yki jv

n+1
j )(−�ni +8�n+1/2

i +5�n+1
i )

+ 5�t

576
�n+1(Qki jlu

n+1
l +Ski jlv

n+1
l )(−unjv

n
i +8un+1/2

j v
n+1/2
i +5un+1

j vn+1
i )

+ 5�t

576
�n+1(Rki jlu

n+1
l +Tki jlv

n+1
l )(−vnj v

n
i +8vn+1/2

j v
n+1/2
i +5vn+1

j vn+1
i ) (A17)
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∫ ∫
�e

5

24
�vn+1∇Wk⊥ ·∇vn+1

⊥ dx dy

= 5

24
�vn+1

(
Jki +Kki − 1

‖u‖2 ((Qki jlu
n+1
l +Rki jlv

n+1
l )un+1

j

+ (Ski jlu
n+1
l +Tki jlv

n+1
l )vn+1

j )

)
vn+1
i (A18)

∫ ∫
�e

Wkwx dx dy = Mkiwxi

= −[ 13 (Qki jlui +Rki jlvi )+ 1
6 (Cki jlui +Dki jlvi )]hlh j

− 1
2 [(Qki jlu j +Rki jlv j )+(Cki jlu j +Dki jlv j )]hlhi (A19)

∫ ∫
�e

Wkwy dx dy = Mkiwyi

= −[ 13 (Ski jlui +Tki jlvi )+ 1
6 (Eki jlui +Fki jlvi )]hlh j

− 1
2 [(Ski jlu j +Tki jlv j )+(Eki jlu j +Fki jlv j )]hlhi (A20)

The definitions of coefficients appeared in Equations (A1)–(A20) are given below

Bk = �Nk

�x
, Ck = �Nk

�y
, Jki =

∫ ∫
�e

�Nk

�x
�Ni

�x
dx dy, Kki =

∫ ∫
�e

�Nk

�y
�Ni

�y
dx dy

Mki =
∫ ∫

�e
Nk Ni dx dy, Uki =

∫ ∫
�e

Nk
�Ni

�x
dx dy, Vki =

∫ ∫
�e

Nk
�Ni

�y
dx dy

Jki j =
∫ ∫

�e
N j

�Nk

�x
�Ni

�x
dx dy, Kki j =

∫ ∫
�e

N j
�Nk

�x
�Ni

�y
dx dy

Oki j =
∫ ∫

�e
Nk

�N j

�x
Ni dx dy, Pki j =

∫ ∫
�e

Nk
�N j

�y
Ni dx dy

Ski j =
∫ ∫

�e
Nk N j

�Ni

�x
dx dy, Tki j =

∫ ∫
�e

Nk N j
�Ni

�y
dx dy

Uki j =
∫ ∫

�e
N j

�Nk

�x
Ni dx dy, Vki j =

∫ ∫
�e

N j
�Nk

�y
Ni dx dy

Xki j =
∫ ∫

�e
N j

�Nk

�y
�Ni

�x
dx dy, Yki j =

∫ ∫
�e

N j
�Nk

�y
�Ni

�y
dx dy

Cki jl =
∫ ∫

�e
Nk

�Nl

�x
N j

�Ni

�x
dx dy, Dki jl =

∫ ∫
�e

Nk
�Nl

�x
N j

�Ni

�y
dx dy
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Eki jl =
∫ ∫

�e
Nk

�Nl

�y
N j

�Ni

�x
dx dy, Fki jl =

∫ ∫
�e

Nk
�Nl

�y
N j

�Ni

�y
dx dy

Qki jl =
∫ ∫

�e
Nl

�Nk

�x
N j

�Ni

�x
dx dy, Rki jl =

∫ ∫
�e

Nl
�Nk

�x
N j

�Ni

�y
dx dy

Ski jl =
∫ ∫

�e
Nl

�Nk

�y
N j

�Ni

�x
dx dy, Tki jl =

∫ ∫
�e

Nl
�Nk

�y
N j

�Ni

�y
dx dy (A21)
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